41 research outputs found

    A Siamese transformer network for zero-shot ancient coin classification

    Get PDF
    Ancient numismatics, the study of ancient coins, has in recent years become an attractive domain for the application of computer vision and machine learning. Though rich in research problems, the predominant focus in this area to date has been on the task of attributing a coin from an image, that is of identifying its issue. This may be considered the cardinal problem in the field and it continues to challenge automatic methods. In the present paper, we address a number of limitations of previous work. Firstly, the existing methods approach the problem as a classification task. As such, they are unable to deal with classes with no or few exemplars (which would be most, given over 50,000 issues of Roman Imperial coins alone), and require retraining when exemplars of a new class become available. Hence, rather than seeking to learn a representation that distinguishes a particular class from all the others, herein we seek a representation that is overall best at distinguishing classes from one another, thus relinquishing the demand for exemplars of any specific class. This leads to our adoption of the paradigm of pairwise coin matching by issue, rather than the usual classification paradigm, and the specific solution we propose in the form of a Siamese neural network. Furthermore, while adopting deep learning, motivated by its successes in the field and its unchallenged superiority over classical computer vision approaches, we also seek to leverage the advantages that transformers have over the previously employed convolutional neural networks, and in particular their non-local attention mechanisms, which ought to be particularly useful in ancient coin analysis by associating semantically but not visually related distal elements of a coin’s design. Evaluated on a large data corpus of 14,820 images and 7605 issues, using transfer learning and only a small training set of 542 images of 24 issues, our Double Siamese ViT model is shown to surpass the state of the art by a large margin, achieving an overall accuracy of 81%. Moreover, our further investigation of the results shows that the majority of the method’s errors are unrelated to the intrinsic aspects of the algorithm itself, but are rather a consequence of unclean data, which is a problem that can be easily addressed in practice by simple pre-processing and quality checking.Publisher PDFPeer reviewe

    An end-to-end review of gaze estimation and its interactive applications on handheld mobile devices

    Get PDF
    In recent years we have witnessed an increasing number of interactive systems on handheld mobile devices which utilise gaze as a single or complementary interaction modality. This trend is driven by the enhanced computational power of these devices, higher resolution and capacity of their cameras, and improved gaze estimation accuracy obtained from advanced machine learning techniques, especially in deep learning. As the literature is fast progressing, there is a pressing need to review the state of the art, delineate the boundary, and identify the key research challenges and opportunities in gaze estimation and interaction. This paper aims to serve this purpose by presenting an end-to-end holistic view in this area, from gaze capturing sensors, to gaze estimation workflows, to deep learning techniques, and to gaze interactive applications.PostprintPeer reviewe

    Adiponectin protects against paraquat-induced lung injury by attenuating oxidative/nitrative stress.

    Get PDF
    The specific mechanisms underlying paraquat (PQ)-induced lung injury remain unknown, which limits understanding of its cytotoxic potential. Although oxidative stress has been established as an important mechanism underlying PQ toxicity, multiple antioxidants have proven ineffective in attenuating the deleterious effects of PQ. Adiponectin, which shows anti-oxidative and antinitrative effects, may have the potential to reduce PQ-mediated injury. The present study determined the protective action of globular domain adiponectin (gAd) on PQ-induced lung injury, and attempted to elucidate the underlying mechanism or mechanisms of action. BALB/c mice were administered PQ, with and without 12 or 36 h of gAd pre-treatment. The pulmonary oxidative/nitrative status was assessed by measuring pulmonary O2(•-), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and 8-hydroxy-2-dydeoxy guanosine (8-OHdG) production, and blood 3-Nitrotyrosine (3-NT). At a dose of 20 mg/kg, PQ markedly increased O2(•-), SOD, MDA, NO and 8-OHdG production 3 h post-administration, but did not significantly increase 3-NT levels until 12 h. gAd inhibited these changes in a dose-dependent manner, via transient activation of MDA, followed by attenuation of MDA formation from 6 h onwards. Histological analysis demonstrated that gAd decreased interstitial edema and inflammatory cell infiltration. These results suggest that gAd protects against PQ-induced lung injury by mitigating oxidative/nitrative stress. Furthermore, gAd may be a potential therapeutic agent for PQ-induced lung injury, and further pharmacological studies are therefore warranted

    DynamicRead: Exploring Robust Gaze Interaction Methods for Reading on Handheld Mobile Devices under Dynamic Conditions

    Get PDF
    Enabling gaze interaction in real-time on handheld mobile devices has attracted significant attention in recent years. An increasing number of research projects have focused on sophisticated appearance-based deep learning models to enhance the precision of gaze estimation on smartphones. This inspires important research questions, including how the gaze can be used in a real-time application, and what type of gaze interaction methods are preferable under dynamic conditions in terms of both user acceptance and delivering reliable performance. To address these questions, we design four types of gaze scrolling techniques: three explicit technique based on Gaze Gesture, Dwell time, and Pursuit; and one implicit technique based on reading speed to support touch-free, page-scrolling on a reading application. We conduct a 20-participant user study under both sitting and walking settings and our results reveal that Gaze Gesture and Dwell time-based interfaces are more robust while walking and Gaze Gesture has achieved consistently good scores on usability while not causing high cognitive workload.Comment: Accepted by ETRA 2023 as Full paper, and as journal paper in Proceedings of the ACM on Human-Computer Interactio

    Sparsification and Optimization for Energy-Efficient Federated Learning in Wireless Edge Networks

    Get PDF
    Federated Learning (FL), as an effective decentral- ized approach, has attracted considerable attention in privacy- preserving applications for wireless edge networks. In practice, edge devices are typically limited by energy, memory, and computation capabilities. In addition, the communications be- tween the central server and edge devices are with constrained resources, e.g., power or bandwidth. In this paper, we propose a joint sparsification and optimization scheme to reduce the energy consumption in local training and data transmission. On the one hand, we introduce sparsification, leading to a large number of zero weights in sparse neural networks, to alleviate devices’ computational burden and mitigate the data volume to be uploaded. To handle the non-smoothness incurred by sparsification, we develop an enhanced stochastic gradient descent algorithm to improve the learning performance. On the other hand, we optimize power, bandwidth, and learning parameters to avoid communication congestion and enable an energy-efficient transmission between the central server and edge devices. By collaboratively deploying the above two components, the numerical results show that the overall energy consumption in FL can be significantly reduced, compared to benchmark FL with fully-connected neural networks

    Actor‑critic learning‑based energy optimization for UAV access and backhaul networks

    Get PDF
    In unmanned aerial vehicle (UAV)-assisted networks, UAV acts as an aerial base station which acquires the requested data via backhaul link and then serves ground users (GUs) through an access network. In this paper, we investigate an energy minimization problem with a limited power supply for both backhaul and access links. The difficul- ties for solving such a non-convex and combinatorial problem lie at the high compu- tational complexity/time. In solution development, we consider the approaches from both actor-critic deep reinforcement learning (AC-DRL) and optimization perspectives. First, two offline non-learning algorithms, i.e., an optimal and a heuristic algorithms, based on piecewise linear approximation and relaxation are developed as benchmarks. Second, toward real-time decision-making, we improve the conventional AC-DRL and propose two learning schemes: AC-based user group scheduling and backhaul power allocation (ACGP), and joint AC-based user group scheduling and optimization-based backhaul power allocation (ACGOP). Numerical results show that the computation time of both ACGP and ACGOP is reduced tenfold to hundredfold compared to the offline approaches, and ACGOP is better than ACGP in energy savings. The results also verify the superiority of proposed learning solutions in terms of guaranteeing the feasibility and minimizing the system energy compared to the conventional AC-DRL

    Adapting to Dynamic LEO-B5G Systems: Meta-Critic Learning Based Efficient Resource Scheduling

    Get PDF
    Low earth orbit (LEO) satellite-assisted communications have been considered as one of the key elements in beyond 5G systems to provide wide coverage and cost-efficient data services. Such dynamic space-terrestrial topologies impose an exponential increase in the degrees of freedom in network management. In this paper, we address two practical issues for an over-loaded LEO-terrestrial system. The first challenge is how to efficiently schedule resources to serve a massive number of connected users, such that more data and users can be delivered/served. The second challenge is how to make the algorithmic solution more resilient in adapting to dynamic wireless environments. We first propose an iterative suboptimal algorithm to provide an offline benchmark. To adapt to unforeseen variations, we propose an enhanced meta-critic learning algorithm (EMCL), where a hybrid neural network for parameterization and the Wolpertinger policy for action mapping are designed in EMCL. The results demonstrate EMCL’s effectiveness and fast-response capabilities in over-loaded systems and in adapting to dynamic environments compare to previous actor-critic and meta-learning methods

    Protein asparagine deamidation prediction based on structures with machine learning methods

    No full text
    <div><p>Chemical stability is a major concern in the development of protein therapeutics due to its impact on both efficacy and safety. Protein “hotspots” are amino acid residues that are subject to various chemical modifications, including deamidation, isomerization, glycosylation, oxidation etc. A more accurate prediction method for potential hotspot residues would allow their elimination or reduction as early as possible in the drug discovery process. In this work, we focus on prediction models for asparagine (Asn) deamidation. Sequence-based prediction method simply identifies the NG motif (amino acid asparagine followed by a glycine) to be liable to deamidation. It still dominates deamidation evaluation process in most pharmaceutical setup due to its convenience. However, the simple sequence-based method is less accurate and often causes over-engineering a protein. We introduce structure-based prediction models by mining available experimental and structural data of deamidated proteins. Our training set contains 194 Asn residues from 25 proteins that all have available high-resolution crystal structures. Experimentally measured deamidation half-life of Asn in penta-peptides as well as 3D structure-based properties, such as solvent exposure, crystallographic B-factors, local secondary structure and dihedral angles etc., were used to train prediction models with several machine learning algorithms. The prediction tools were cross-validated as well as tested with an external test data set. The random forest model had high enrichment in ranking deamidated residues higher than non-deamidated residues while effectively eliminated false positive predictions. It is possible that such quantitative protein structure–function relationship tools can also be applied to other protein hotspot predictions. In addition, we extensively discussed metrics being used to evaluate the performance of predicting unbalanced data sets such as the deamidation case.</p></div
    corecore